#### **Oral Anticoagulant Therapies:** A Balancing Act

Edith A. Nutescu, Pharm.D., FCCP **Clinical Professor** The University of Illinois at Chicago College of Pharmacy Director, Antithrombosis Center The University of Illinois Hospital and Health Sciences System Chicago, Illinois

#### Learning Objectives

At the conclusion of this presentation, participants will be able to

- Identify risk factors for bleeding complications with oral anticoagulant agents
- · Discuss strategies for minimizing the risk of bleeding with oral anticoagulant agents

#### Background

- · Due to increase in the U.S. elderly population, prevalence of thrombosis related complications and bleeding associated with anticoagulants is constantly rising
- · Various tools exist to assess thrombotic risk but assessment of bleeding risk is often ignored

Roger VL et al. Circulation, 2012; 125:e2-e220.



## Warfarin

- Widely used to prevent thromboembolism
- · 2009, warfarin Rx for 3 million U.S. patients · Leading cause of serious drug-related AEs
- Bleeding 15-20%/yr; life-threatening 1-3%/yr

WARNING: BLEEDING RISK See full prescribing information for complete boxed warning.

- Warfarin sodium can cause major or fatal bleeding. (5.1)
   Perform regular monitoring of INR in all treated patients. (2.1)
   Drugs, dietary changes, and other factors affect INR levels achieved with
  warfarin therapy. (7)
- Instruct patients about prevention measures to minimize risk of bleeding and to report signs and symptoms of bleeding. (17)

Budnitz DS et al. N Engl J Med. 2011; 365:2002-12. Holland L et al. Transfusion. 2009; 49:1171-7. Peacock WF et al. *Clin Cardiol*. 2012; [Epub ahead of print]. Coumadin (warfarin sodium) prescribing information. 2011 Oct (URL in ref list).







|                              | Apixaban        | Dabigatran      | Rivaroxaban     | Edoxaban   |
|------------------------------|-----------------|-----------------|-----------------|------------|
| Direct factor inhibition     | Ха              | lla             | Xa              | Xa         |
| Renal clearance              | 25%             | 80%             | 33%             | 40%        |
| t% in hours by CrCl (mL/min) |                 |                 |                 |            |
| CrCl > 80                    | 8-15            | 14-17           | 5-9h            | 9-11       |
| CrCl 50 – 79                 | 14.6            | 16.6            | 8.7             | NA         |
| CrCl 30 – 49                 | 17.6            | 18.7            | 9.0             | NA         |
| CrCl < 30                    | 17.3            | 27.5            | 9.5             | NA         |
| Dialyzable                   | Unlikely        | Yes             | Unlikely        | Unlikely   |
| Decreased renal functio      | n is associated | with an increas | e in anticoagul | ant effect |





## Ying – Yang Principle: Thrombosis vs. Bleeding

- With every approach to reduce thrombosis, there is an accompanying risk of increasing bleeding complications
- Conversely, reducing bleeding complications
   may increase thrombotic events
  - Both increase morbidity and mortality
- Balancing both ends of the spectrum is essential, and an individualized approach to therapy is advocated

#### Patient Case

- 69-year-old African American woman
- HTN (uncontrolled 165/95), DM, CRI (CrCl 35 mL/min) and HLD
- Presents to ER with dizziness and palpitations
- EKG: Atrial fibrillation, rate of 110 bpm
- Exam: normal, Labs: WNL, Cr 1.5
- Meds: lisinopril, simvastatin, glipizide
- SH: ETOH (+), 2-3 drinks/day
- Patient started on oral diltiazem XR 120 mg daily

# Q1: This patient's risk of a cardioembolic stroke is

- a. Low
- b. Moderate
- c. High
- d. Super high...ticking time bomb

#### Stroke Prevention in Atrial Fibrillation: Assessing Stroke Risk

| CHADS <sub>2</sub> Scor                                                      | е     | CHA <sub>2</sub> DS <sub>2</sub> -Vasc Sco | re    |
|------------------------------------------------------------------------------|-------|--------------------------------------------|-------|
| Risk Factor                                                                  | Score | Risk Factor                                | Score |
| Congestive heart failure                                                     | 1     | Congestive heart failure /                 | 1     |
| Hypertension                                                                 | 1     | LV dysfunction                             |       |
| Age ≥ 75 years                                                               | 1     | Hypertension                               | 1     |
| Diabetes                                                                     | 1     | Age ≥ 75 years                             | 2     |
| Stroke or TIA history                                                        | 2     | Diabetes                                   | 1     |
| MAXIMUM                                                                      | 6     | Stroke/TIA/TE history                      | 2     |
|                                                                              |       | Vascular disease                           | 1     |
|                                                                              |       | Age 65 – 74 years                          | 1     |
|                                                                              |       | Sex category, female                       | 1     |
| Gage BF et al. <i>JAMA.</i> 2001; 28<br>Lip GY et al. <i>Chest.</i> 2010; 13 |       | MAXIMUM                                    | 9     |

#### Stroke Prevention in Atrial Fibrillation: Guideline Recommendations

|           | CHADS <sub>2</sub> score                             | Chest<br>(Grade of rec)       | ACCF/AHA/HRS<br>(Class of rec)                                                |
|-----------|------------------------------------------------------|-------------------------------|-------------------------------------------------------------------------------|
|           | 0 (low)                                              | No therapy (2B)               | Aspirin (I)                                                                   |
|           | 1(moderate)                                          | OAC (1B)<br>Dabi > warfarin*  | OAC or aspirin (IIa)<br>Dabi alt to warfarin <sup>†</sup>                     |
|           | ≥ 2 (high)                                           | OAC (1A)<br>Dabi > warfarin*  | OAC (I)<br>Dabi alt to warfarin <sup>†</sup>                                  |
| s/j<br>†E | o intracoronary stent<br>xcept in patients with pros |                               | is, stable CAD, recent ACS, o<br>namically significant valvular<br>ase        |
| Ri        | varoxaban and apixaban r                             | not approved at time of guide | eline publication; not included                                               |
|           | Fuster V et al. Circulation. 2                       |                               | hest. 2012;141(suppl 2):e531S-7<br>et al. <i>Circulation.</i> 2011; 123:1144- |

#### Q2: This patient's risk of bleeding is

- a. Low
- b. Moderate
- c. High
- d. Super high...ticking time bomb



- a. 1
- b. 2 c. 3
- d. 4

|                                                  |       | in Atrial Fibrillatior<br>and Bleeding Risk                                     | ו         |
|--------------------------------------------------|-------|---------------------------------------------------------------------------------|-----------|
| HEMORR <sub>2</sub> HAGES So                     | core  | HAS-BLED Score                                                                  |           |
| Risk Factor                                      | Score | Risk Factor                                                                     | Score     |
| Hepatic or renal disease                         | 1 ea  | Hypertension, SBP > 160 mmHg                                                    | 1         |
| Ethanol use                                      | 1     | Abnormal renal or liver function                                                | 1 ea      |
| Malignancy                                       | 1     | Stroke                                                                          | 2         |
| Older age: > 75 years                            | 1     | Bleeding history or predisposition                                              | 1         |
| Reduced platelet count or Fxn                    | 1 ea  | Labile INRs                                                                     | 2         |
| Re-bleeding                                      | 2     | Elderly: age > 65 years                                                         | 1         |
| Hypertension, uncontrolled                       | 1     |                                                                                 |           |
| Anemia                                           | 1     | Drugs or alcohol<br>Antiplatelet or NSAID                                       | 1         |
| Genetic factors                                  | 1     | Alcohol use: > 8 servings/week                                                  |           |
| Elevated fall risk ±<br>neuropsychiatric disease | 1     | MAXIMUM                                                                         | 11        |
| Stroke                                           | 1     | Gage BF et al. Am Heart J. 2006; 1                                              | 51:713-9. |
| MAXIMUM                                          | 14    | Pisters R et al. Chest. 2010; 138:1<br>Lip GY et al. J Am Coll Cardiol. 2011; 5 | 093-100.  |







- Aim to stop AC agent before surgery so there is minimal or NO residual AC effect at the time of surgery
- bleeding, and bowel
- Resume once adequate hemostasis has been achieved

# **PRE-operative Management** Considerations

- · Minor surgery
  - Low bleeding risk
  - Can have some residual AC effect at time of surgery
- Major surgery High bleeding risk - Spinal anesthesia
- Aim to have minimum or NO residual AC effect at time of surgery

## **PRE-Operative Management** Considerations

| Number of<br>half-lives elapsed | % of Drug Effect<br>Remaining |
|---------------------------------|-------------------------------|
| 1                               | 50                            |
| 2                               | 25                            |
| 3                               | 12.5                          |
| 4                               | 6.25                          |
| 5                               | 3.125                         |

Allow longer period of time before surgery · Elderly

- Known impaired renal function
- Known clinical factors to cause delay in INR drop or ٠ drug elimination for novel oral anticoagulants

|                 | nendations for Timing of round Invasive Procedures                                  |
|-----------------|-------------------------------------------------------------------------------------|
| Discontinuation | 5 days before scheduled procedure                                                   |
| Resumption      | "12-24 hours after surgery and when there is adequate hemostasis"                   |
|                 | (To minimize bleeding risk, use patient's pre-operative dose rather than reloading) |
|                 | Douketis JD et al. Chest. 2012; 141(suppl 2):e326S-50S.                             |

#### Interruption of Novel Oral Anticoagulant Therapy for Invasive Procedures and Surgery<sup>a</sup>

| Drug<br>(Renal Function)       | No. of Doses to Skip<br>before Minor<br>Procedure <sup>b</sup> | No. of Doses to Skip<br>before Major<br>Surgery <sup>b</sup> |
|--------------------------------|----------------------------------------------------------------|--------------------------------------------------------------|
| Dabigatran (CrCl > 50 mL/min)  | 1 or 2                                                         | 4                                                            |
| Dabigatran (CrCl ≤ 50 mL/min)  | 3 or 4                                                         | 6-8                                                          |
| Rivaroxaban (CrCl > 50 mL/min) | 1 or 2                                                         | 3 or 4                                                       |
| Apixaban                       | 1 or 2                                                         | 3 or 4                                                       |

LMWH is used as bridging therapy in patients with atrial fibrillation, mechanical heart valve, or venous thromboembolism who are at high risk for thromboembolism, oral anticagulant therapy should be resumed at least 1 hr after UFH infusion is discontinued and at least 10 hr after last dose of LMWH.

<sup>b</sup>Assuming dabigatran is taken twice daily, rivaroxaban is taken once daily, and apixaban is taken twice daily. Viles-Gonzalez JF et al. *J Cardiovasc Electrophysiol*. 2011; 22:948-55.





#### Summary

- Assessment of bleeding risk must be objective with the use of bleeding risk scores
- Health care providers must maintain a fine balance between thrombosis and bleeding in choosing and managing oral anticoagulant therapy
- Novel agents with multiple doses and indications
  - Special attention to half-life and renal function
  - Various agents will require different algorithms for managing invasive procedures and reversal approaches

## Options for Reversing the Effects of Oral Anticoagulants

James S. Kalus, Pharm.D., BCPS (AQ-Cardiology) Senior Manager, Patient Care Services Henry Ford Hospital Detroit, Michigan

## Learning Objectives

At the conclusion of this presentation, participants will be able to

- Describe the relative benefits and limitations of emergent anticoagulant reversal strategies
- Discuss the clinical evidence supporting the use of emergent anticoagulant reversal strategies



Q4: Which of the following patients taking warfarin would require pharmacologic reversal of anticoagulation? Select all that apply.
a. INR of 4, presenting to ED with complaints of hematemesis
b. INR of 12 and no signs or symptoms of bleeding
c. INR of 2.2, requiring emergent coronary artery bypass graft surgery

d. INR of 7 and no signs or symptoms of bleeding

















|               | n   | Oral Vitamin<br>K Dose                   | Any Bleeding<br>(n)                                         | Major<br>Bleeding<br>(n) |
|---------------|-----|------------------------------------------|-------------------------------------------------------------|--------------------------|
| Gunther 2004  | 89  | 2 mg                                     | Vitamin K = 0 <sup>a</sup><br>No vitamin K = 3 <sup>a</sup> | n/a                      |
| Crowther 2010 | 107 | 2.5 mg                                   | 16 <sup>b</sup>                                             | 1 <sup>b</sup>           |
|               |     | f bleeding with or<br>s refractory to wa | al vitamin K<br>rfarin with oral vitarr                     | iin K                    |
|               |     |                                          | E et al. Thromb Res. 2<br>I. Thromb Haemost. 20             |                          |

#### Reversal of Warfarin: Bleeding or Need for Emergent Surgery

#### <u>Options</u>

- IV vitamin K
   PLUS
- Fresh frozen plasma (FFP) OR
- Prothrombin complex concentrate (PCC)
   OR
- Recombinant factor VIIa (rFVIIa)
   OR
- Activated PCC (aPCC)



- Hemolytic transfusion reactions and hypersensitivity
  - DomBourian M et al. J Infusion Nursing. 2012; 35:28-32.

#### **Concentrated Blood Factor Products**

|                      | rFVIIa          | 3-factor<br>PCC               | 4-factor<br>PCC                                                                                   | aPCC            |
|----------------------|-----------------|-------------------------------|---------------------------------------------------------------------------------------------------|-----------------|
| Brand<br>Names       | Novo-<br>Seven® | Bebulin VH®<br>Profilnine SD® | Octaplex <sup>®</sup><br>Beriplex P/N <sup>®</sup><br>Cofact <sup>®</sup><br>Kanokad <sup>®</sup> | FEIBA®          |
| U.S.<br>Availability | Yes             | Yes                           | No                                                                                                | Yes             |
| Factors<br>Provided  | VII             | II, IX, X                     | II, VII, IX, X                                                                                    | II, VII, IX, X  |
| Activated?           | Yes             | No                            | No                                                                                                | Yes             |
|                      |                 | Samama CM.                    | Eur J Anaesthesio                                                                                 | ol. 2008; 25:78 |

|   | Prothror        | mbin Comp                                           | olex Conce                                                   | entrates  | (PCCs)             |
|---|-----------------|-----------------------------------------------------|--------------------------------------------------------------|-----------|--------------------|
|   | Approximate Fac | ctor Concentrations i<br>Profilnine SD <sup>®</sup> | n Available PCCs <sup>a,t</sup><br>Beriplex P/N <sup>®</sup> | Octaplex® | Cofact®            |
|   |                 |                                                     | -                                                            | -         |                    |
|   | Ш               | <u>&lt;</u> 35-40                                   | 31                                                           | 38        | 14-35              |
|   | VII             | <u>&lt;</u> 10                                      | 16                                                           | 24        | 7-20               |
| ſ | IX              | 25                                                  | 29                                                           | 25        | 25                 |
|   | х               | <u>&lt;</u> 25                                      | 41                                                           | 30        | 14-35              |
|   |                 | pressed as units/mL.                                | olex) prescribing infor                                      |           | (URL in ref list). |

#### **Concentrated Blood Factors**

#### · Dosing issues

- Fixed dosing vs. weight based
- Extrapolating results reported in literature
- Variability in factor concentrations by PCC product

#### Adverse events

- Prothrombotic potential
  - · Especially with "activated" products
  - rFVIIa, aPCC
  - Anticipated benefit must outweigh prothrombotic risk
     WHO should be reversed will be discussed in the next presentation

| Study    | Holland and Colleagues                                        |
|----------|---------------------------------------------------------------|
| n        | 40 PCC/42 Controls                                            |
| Patients | INR > 5 with bleeding or at risk for bleeding                 |
|          | ICH excluded                                                  |
|          | Control group: historical controls                            |
| Dosing   | PCC low: profilnine 25 units/kg; High: profilnine 50 units/kg |
|          | FFP ~ 2 units per prescriber; Vitamin K 1 - 10 mg             |
| Findings | Target INR < 3 within 24 hours                                |
|          | Baseline INR: 8.6 – 9.4                                       |
|          | Low and high dose had similar effect on INR                   |
|          | PCC alone: 43 – 55% achieved INR target                       |
|          | FFP alone: 62% achieved INR target                            |
|          | PCC + FFP: 89 – 93% achieved INR target p≤0.                  |







- Reversal due to bleeding
   n = 212
- Randomized, open-label
   4-factor PCC (25 50 units/kg, based on INR)
   FFP (10 15 mL/kg, based on INR)

#### **KEY FINDINGS**

- · Bleeding: similar at 24 hours
- · INR correction: faster with 4-factor PCC
- Fluid overload: less with 4-factor PCC

Sarode R et al. Thrombosis and Hemostasis Summit of North America, Chicago, IL: May 3-5, 2012.





|                        | Standard<br>(n=20) | FVIIa (n=20) | p-value |
|------------------------|--------------------|--------------|---------|
| Initial INR            | 2.51               | 2.87         | >0.05   |
| FFP (units)            | 4.6                | 2.3          | 0.001   |
| Vitamin K              | 800%               | 95.0%        | >0.05   |
| Time to surgery        | 74.6               | 5.6          | 0.30    |
| In-hospital mortality  | 35.0%              | 35.0%        | 1.0     |
| Thromboembolism        | 5.0%               | 20.0%        | 0.15    |
| INR < 1.3              | 68.4%              | 100%         | 0.02    |
| Time to INR < 1.3 (hr) | 17.5               | 4.8          | <0.001  |

#### Warfarin Reversal: 3-Factor PCC vs. Factor VIIa

| Design: Retrospective cohort<br>Patients: Adult patients presenting with ICH, taking warfarin |                         |                        |  |
|-----------------------------------------------------------------------------------------------|-------------------------|------------------------|--|
|                                                                                               | Factor VIIa<br>(n = 15) | PCC*<br>(n = 9)        |  |
| Baseline INR                                                                                  | 6.1#                    | 2.3^                   |  |
| 1-hour INR                                                                                    | 1.1#                    | 1.48^                  |  |
| Treatment dose                                                                                | 53.4 mcg/kg             | 27.8 units/kg          |  |
| Vitamin K dose                                                                                | 17.8 ± 14.6 mg          | 17.1 ± 12.9 mg         |  |
| FFP                                                                                           | 1025 ± 828 mL           | 778 ± 484 mL           |  |
| *Bebulin VH, 3-factor PCC<br>#n = 6; ^n = 5                                                   | Pinner NA et al. World  | Neurosurg. 2010; 74:63 |  |









| Urgent Warfarin Reversal:<br>Bleeding or Surgery |                                                                                                                                                                                                                                                        |  |  |
|--------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| Clinical Scenario                                | Reversal Approach                                                                                                                                                                                                                                      |  |  |
| Bleeding                                         | Vitamin K 5 – 10 mg slow IV + 4-factor PCC <sup>†</sup>                                                                                                                                                                                                |  |  |
| Surgery in < 24 hours                            | IV vitamin K 5 – 10 mg slow IV                                                                                                                                                                                                                         |  |  |
|                                                  | +                                                                                                                                                                                                                                                      |  |  |
|                                                  | Either 4-factor PCC#, factor VIIa or aPCC‡                                                                                                                                                                                                             |  |  |
| Surgery in > 24 hours                            | May have time to use IV vitamin K alone <sup>‡</sup>                                                                                                                                                                                                   |  |  |
|                                                  | blished literature and pharmacodynamics of vitamin K.<br>lable in the United States, FFP or factor VIIa may be needed                                                                                                                                  |  |  |
| brook A et al. Chest. 2012; 141(Si               | 2000; 14:458-61; Fredriksson K et al. Stroke. 1992; 23:972-7<br>uppl):e152s-184s; Huttner HB et al. Stroke. 2006; 37:1456-7<br>1997; 77:477-80; Nishijima DK et al. Acad Emerg Med. 2010<br>17:244-51; Wojcik C et al. Int J Emerg Med. 2009; 2:217-25 |  |  |



| Agent                      | FFP +<br>PCC | PCC +<br>Vlla | aPCC   |
|----------------------------|--------------|---------------|--------|
| FFP (15 mL/kg)             | \$300        |               |        |
| 3-factor PCC (25 units/kg) | \$1932       | \$1932        |        |
| Factor VIIa (20 mcg/kg)    |              | \$2820        |        |
| aPCC (1000 units)          |              |               | \$1800 |
| Cost/reversal regimen      | \$2232       | \$4752        | \$1800 |



DABIGATRAN and RIVAROXABAN

#### How do we reverse them?

- Not really sure
- · Largely theoretical
- Based on very limited data
  - Animal models
  - Healthy volunteer studies
  - Case reports



| Reversal Agent | Dabigatran | Rivaroxaban |
|----------------|------------|-------------|
| 3-factor PCC   | ???        | ???         |
| 4-factor PCC   | Yes        | No          |
| Factor VIIa    | Yes/No     | Yes/No      |
| aPCC           | Yes        | Yes         |
| FFP            | No         | ???         |

Human Data: Dabigatran and Rivaroxaban aPTT = activated partial thromboplastin time ECT = ecarin clotting time ETT = endogenous thrombin potential 24-hour serial lab monitoring igatran: aPTT, ETP lag time, ECT, TT PT = prothrombin time Rivaroxaban: PT. ETP TT = thrombin time Rivaroxaban 20 mg BID Rivaroxabar 20 mg BID (n = 6) (n = 6) Healthy volunteer: PCC or (n : Dabigatran 150 mg BID Dabigatran 150 mg BID (n = 6) (n = 6) 11 days 3 days days Eerenberg ES. Circulation, 2011: 124:1573-9



#### **Dabigatran**

 No effect of PCC on ANY measure of coagulation

#### **Rivaroxaban**

- PT
  - Normalized within 15 minutes (p<0.001)
- ETP

- Normalized within 15 minutes (p<0.001)

Eerenberg ES. Circulation. 2011; 124:1573-9.





#### Dabigatran: Factor VIIa and Hemodialysis

- 79-year-old man, CrCl = 36 mL/min
- Dabigatran 150 mg twice daily
- Required aortic valve replacement/CABG – Dabigatran held x 2 days prior to surgery
- Massive bleeding postoperatively
   Managed with 5 doses of factor VIIa
  - 2.4 mg/dose x 3 dose + 7.2 mg/dose x 2 doses
  - Hemodialysis x 6 hours
- Supports previous pharmacokinetics study data suggesting 60 – 70% removal of dabigatran dose

Warkentin TE et al. *Blood.* 2012; 119:2172-4. Stangier J et al. *Clin Pharmacokinet.* 2010; 49:259-68.

# Dabigatran: Perioperative Management

| Renal function<br>(CrCl, mL/min) | Half-life (hours) |                           | abigatran dose<br>surgery |
|----------------------------------|-------------------|---------------------------|---------------------------|
|                                  |                   | Standard<br>bleeding risk | High bleeding<br>risk     |
| > 80                             | 13                | 24 hours                  | 2 – 4 days                |
| > 50 to 80                       | 15                | 24 hours                  | 2 – 4 days                |
| > 30 to 50                       | 18                | At least 48<br>hours      | 4 days                    |
| <u>&lt;</u> 30                   | 27                | 2 – 5 days                | > 5 days                  |

| CrCl          | >80                    | 50 – 79   | 30 – 49 | <30     |
|---------------|------------------------|-----------|---------|---------|
| mL/min)       | (n = 8)                | (n = 8)   | (n = 8) | (n = 8) |
| alf-life (hr) | 8.3                    | 8.7       | 9.0     | 9.5     |
|               | as CrCl ↓<br>⁄aroxaban | clearance |         |         |
|               | enal (hepatio          |           |         |         |

Kubitza D et al. Br J Clin Pharmacol. 2010; 70:703-12.

#### Urgent Reversal of Novel Anticoagulants: Bleeding or Surgery

#### Possible strategies

- aPCC
  - Supported by animal and limited human data
- 3-factor PCC plus factor VIIa
   Mimic effects of aPCC
- Maybe a 4-factor PCC – Conflicting animal data, limited human data

#### Urgent Reversal of Novel Anticoagulants: Practical Considerations

#### **Dabigatran**

- Charcoal after recent ingestion
- Renal impairment complicates reversal
   Role for hemodialysis
- <u>Rivaroxaban</u>

• Less reliance on renal clearance Dosing

#### Very little guidance

– Higher doses than usual?

#### Patient selection

Risk vs. benefit

# Conclusions Warfarin reversal • Concentrated blood factors > FFP alone - All studies have some methodologic limitations Reversal of dabigatran and rivaroxaban • Concentrated blood factors may have a role - aPCC or 4-factor PCCs may be best approach - Extremely limited data - Human data lacking Lack of clear benefit + risk of blood factor products • Proper patient selection is critical

## Practical Issues in Developing an Oral Anticoagulant Reversal Strategy

William E. Dager, Pharm.D., BCPS (AQ-Cardiology) Pharmacist Specialist UC Davis Medical Center Sacramento, California

## Learning Objectives

At the conclusion of this presentation,

participants will be able to

- Explain patient-specific treatment options for reversing the effects of oral anticoagulants using laboratory observations
- Develop an approach to managing major bleeding in a patient on oral anticoagulation therapy

# Warfarin Situations

- 75 yo with AF, CKD V, heart failure, and CVA on warfarin 1 mg/day and has a GI bleed. INR = 12
- 56 yo with mechanical MVR brought into ED after crashing his motorcycle. Had notable abdominal injuries with hemorrhage apparent. INR = 3.0
- 27 yo with PE 1 year ago being assessed for colonoscopy. Warfarin 15 mg/day. INR = 2.5

## Skill: Assess the Situation

- Bleeding?
  - Site: risk of a complication
- · Level of anticoagulation
  - Laboratory assay
  - Antiplatelet agents?
- · Hold anticoagulant

#### Skill: Explore Options

- · Mechanical intervention
- Pharmacologic intervention
  - Intensity of anticoagulation (prior and post)
  - · Goal or need for re-initiating therapy
  - · Neutralize the drug
  - Reverse the effects of the drug independently

# Skill: Consider the Entire Needs of the Patient

- Replace losses
- Optimize management of co-morbid situations
- Create a plan and request necessary follow up
- · Evaluate thrombosis risks

#### Reversing Warfarin Vitamin K (IV or PO) – 0.25 – 10 mg Fresh frozen plasma (FFP) Prothrombin complex concentrate (PCC) • PCC3 vs. PCC4 vs. activated PCC • 25-50 units/kg depending on patient's weight, INR, and bleeding Recombinant activated factor VII (rFVIIa) • Low (1-2 mg) vs. high dose

Dougherty J. In Dager WE et al. Anticoagulation therapy. 2011:123-54. Dager WE. Ann Pharmacotherapy. 2011; 45:1016-20.







- What dose?
  - How fast do we need a response
- What route?
- PO or IV (avoid SC or IM)
- Are other more rapid therapies planned (PCC, rFVIIa, FFP)
- Administration
  - Infusion rate Max 1 mg/min (over ~15 20 min)
  - Light sensitive (~50 mL, avoid delay using large volumes)
  - Anaphylaxis concerns (3:10,000 risk)

Riegert-Johnson DL et al. Ann Allergy Asthma Immunol. 2002; 89:400-6.





# What Improves Outcomes in Warfarin-related ICH?

A good stitch

 STICH Trial: ? Any impact of neurosurgery on improved outcomes Dowlatshahi et al. Stroke. 2012

- PCC rapidly reversed the INR, but did not change mortality and morbidity
- PCC shorten time to surgical procedures
- Surgery may improve ICU-related outcomes
- Caution rebound
- · Effects rapid

- Retrospective studies may not have control on INR times

Mendelow AD et al. Lancet. 2005; 365:387-97; Dowlatshahi D et al. Stroke. 2012; 43:1812-7; Demeyere R et al. Vox Sang. 2010; 99:251-60; Chong CT et al. Anaesth Intensive Care. 2010; 38:474-80; Dager WE. Ann Pharmacother. 2011; 45:1016-20.



# PCC Considerations

- INR > 4.5 may not have sufficient rFVIIa (needs confirmation)
- UFH in PCC may increase risk for HIT
- · Not recommended if AT deficiency
- Balanced PCC may be advantage in VKA reversal to decrease complications (needs confirmation)
  - $\ \downarrow$  Regulatory anticoagulant proteins C and S  $\rightarrow \uparrow$  thrombogenicity
- PCCs reduce the INR within 10 minutes
- PCC 4 in the USA soon?

Rodgers GM. Am J Hematol. 2012; 87:898-902.



- 75 yo with AF, CKD V, heart failure, and CVA on warfarin 1 mg/day and has a GI bleed. INR = 12
- 56 yo with mechanical MVR brought into ED after crashing his motorcycle. Had notable abdominal injuries with hemorrhage apparent. INR = 3.0
- 27 yo with PE 1 year ago being assessed for colonoscopy. Warfarin 15 mg/day. INR = 2.5

# Dabigatran Reversal Case

AC Jr. is a 85 yo man with acute decompensated heart failure and receiving dabigatran 150 mg PO BID for AF. He has fallen and hit his head and is being admitted to the ED.

# Q6: Which of the following tests would you NOT request?

- a. PT/INR
- b. Antifactor Xa activity
- c. Thrombin time
- d. Serum creatinine

#### Dabigatran Reversal Case

AC Jr. is a 85 yo man with acute decompensated heart failure and receiving dabigatran 150 mg PO BID for AF. He has fallen and hit his head and is being admitted to the ED.

- Baseline INR in ED = 2.0
- Thrombin time = > 200 seconds
- Scr = 2.0 mg/dL

MD orders Vit K 10 mg IV and FFP

# Q7: Will you process this order?

- a. Yes
- b. No
- c. I'm not sure

| Is There                                 | a Way to Reverse                                                                                         | these Agents?                                                                                                                   |
|------------------------------------------|----------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------|
| ETP = endogenous<br>thrombin potential   | Dabigatran<br>T ½ 14-17 hr                                                                               | Rivaroxaban<br>T ½ 5-9hr; Elderly 11-13 hr                                                                                      |
| Hemodialysis                             | Yes ~2/3 in 2 hr                                                                                         | Not expected (> 90% bound)<br>(Apixaban: 87% bound)                                                                             |
| Antidote                                 | In development                                                                                           |                                                                                                                                 |
| Hemostatic Agents                        |                                                                                                          |                                                                                                                                 |
| PCC4<br>(50 units/kg)                    | Did not restore aPTT, ECT, TT     rFVIIa alt. ETP lag time     PCC corrected ETP     responsive > rFVIIa | PT reversed, normalized ETP<br>(114% Normal)<br>PCC corrected ETP                                                               |
| Activated PCC (aPCC)<br>(25-50 units/kg) | Altered ETP lag time<br>Effective – single case                                                          | Corrected all parameters                                                                                                        |
| rFVIIa<br>(high dose)                    | CABG: Limited effect high<br>dose single case                                                            | Corrected lag time                                                                                                              |
| 2011                                     | ; 124:1573-9; Dager WE et al. Crit C                                                                     | 16-27; Eerenberg ES et al. <i>Circulation.</i><br>Sare Med. 2011; 39:243 (Abstract 867);<br>. Thromb Haemost. 2012; 108:217-24. |

|                             | Dabigatran                                                              | Rivaroxaban/Apixaban                               |
|-----------------------------|-------------------------------------------------------------------------|----------------------------------------------------|
| Drug present                | Thrombin time                                                           | ? Chromogenic anti-factor Xa<br>High sensitive INR |
| Quantitative<br>test        | ? Dilute thrombin time or<br>Chromogenic ECT                            | Chromogenic anti-factor Xa                         |
| Sensitivity:<br>PT vs. aPTT | aPTT > PT<br>(Point-of-care INR > central lab)                          | PT > aPTT                                          |
| No or limited<br>effect     |                                                                         | ECT, TT                                            |
| What does a                 | T - Potential for normal value<br>value mean?<br>safe level to operate? | es at trough/active levels                         |



#### Dialysis of Dabigatran Stangier et al: *Clin Pharmacokinet* 2010; 49:259-68 • Design: Dabigatran 50 mg x 1 + 2 HD sessions; CKD V – Not 150 mg multiple doses or AKI • Result: Hemodialysis ~2/3rds removed – 2 hr Cp Arterial 12.5 ng/mL > Cp Venous 4.4 ng/mL

Wanek et al: Case report. 2.5 hr HD (BFR 500 mL/hr):  $\downarrow$  TT 90 – 60 sec

Stangier J et al. Clin Pharmacokinet. 2010; 49:259-68. Wanek MR et al. Ann Pharmacother. 2012 ;46:e21.

#### Reversing Dabigatran: A Case Experience

Setting: AF and undergoing ablation, on dabigatran

Situation: Transeptal perforation, pericardial window, and > 3L blood loss

Action: FFP, protamine, PRBCs with limited to no effect on bleeding

- aPCC: 25 units/kg over 15 minutes
- Bleeding slows in first few minutes and has stopped before infusion completed
- Limited impact on TT, ECT, INR, or aPTT
   Low dose effective
- Low dose effective
   Single case report Use caution

Dager WE et al. Crit Care Med. 2011; 39:243 (Abstract 867).

#### Dabigatran Reversal Case

AC Jr. is a 85 yo man with acute decompensated heart failure and receiving dabigatran 150mg PO BID for AF. He has fallen and hit his head and is being admitted to the ED.

- Baseline INR in ED = 2.0
- Thrombin time = > 200 seconds
- Scr = 2.0 mg/dL
- CT scan to assess damage
- Arrange management options (dialysis, hemostatic agent, calcium if blood given)
- Check time of last dose
- Assess bleeding
- Consider anticoagulation options
- · Patient and physician education

#### Systems Support

- · 24-hour process
- Correct labs available
- Guidelines on how to use the available agents
  - Easy for clinicians to locate
- Rapid ability to implement management options